

Reduced Precision Strategies for Deep Learning: 3DGAN Use Case

10th ICPRAM Conference 2021

Florian Rehm [CERN openlab, RWTH Aachen University]

Sofia Vallecorsa [CERN openlab], Vikram Saletore [Intel], Hans Pabst [Intel], Adel Chaibi [Intel], Kerstin Borras [DESY, RWTH Aachen University], Dirk Krücker [DESY]

06.02.2021

Calorimeter Detectors

- Particle physics studies the fundamental properties and interactions of (novel) elementary particles.
- Particles are colliding with highest energy to produce know and novel particles.
- Calorimeter detectors measure the energy of particles produced in the collisions.
- The entering particle produces a cascade of shower particles which are absorbed and detected.

Calorimeter Simulations

- Calorimeter Monte Carlo simulations are based on Geant4 which are computing resource intensive when used in detailed geometry and particle tracking
- They use about 50% of the computational resources of the worldwide LHC grid
- LHC high luminosity phase requires 100 times more simulated data*

*A Roadmap for HEP Software and Computing R&D for the 2020s https://doi.org/10.1007/s41781-018-0018-8

→ Develop a new approach which occupies less resources

3D Training Data

Interpretation of the calorimeter outputs as images

Energy

25 20

15 deptr

0

5

Particle

10

20

25

- 3D shower image granularity: 25x25x25
- Energies between 2-500 GeV

Generative Adversarial Networks 3DGAN

- Train two networks (Generator & Discriminator) in a minmax game
- GANs reach a good level of accuracy*
- We want to further decrease the computational resources
- Only the generator network is used to generate shower images

Discriminator

→

Fake

*G. R. Khattak, et al., ICMLA 2019 Particle Detector Simulation using Generative Adversarial Networks with Domain Related Constraints

CERN CERN

Florian Rehm - Reduced Precision Strategies for Deep Learning: 3DGAN Use Case

Real data

Generator

Noise -

Real/Fake

Baseline Conv3D Generator

• Until now: Representing 3D images \rightarrow Using 3D convolutional layers

- Conv3D layers are not supported in lower precision
 - → Creating neural network consisting only of Conv2D layers
 - First approach: Channel dimension as 3rd dimension
 - Bad accuracy

FI. CERN

openlab

Florian Rehm - Reduced Precision Strategies for Deep Learning: 3DGAN Use Case

Paper: Three dimensional Generative Adversarial

New Conv2D Generator

- Solving a 3D problem with 2D layers
- Increasing the number of parameters → more powerful network
 → higher accuracy
- 2.1x speedup on CPU

CERN Openlab

Why Reduced Precision?

- Goal: Develop and optimize a new simulation approach to make sure to use the hardware as efficiently as possible
- Deep Learning training and inference are computationally intensive
 - Models need a large amount of memory
 - Moving data to and from the processor units strains the bandwidth

- → Reduced precision computation reduces memory and bandwidth occupation
- → Speed-up and lower memory requirements

CERN

openlab

Reduced Precision Computing

• Quantization: Converting a number from a higher to a lower format

• E.g. from float32 to int8

CERN CERN

Quantization Problems

- TensorFlow supports no negative quantized values (signed int8)
- → All quantization tools do not support LeakyReLU function
- Needed to be implemented

- Reference Tool: TensorFlow Lite
 - Does not support signed int8 → no LeakyReLU
 - Does not support transpose convolutional layers for up-sampling
 - \rightarrow Use quantized TensorFlow Lite model only for accuracy comparison
 - https://www.tensorflow.org/lite

CERN

🗗 openlab

Florian Rehm - Reduced Precision Strategies for Deep Learning: 3DGAN Use Case

Computational Evaluation

(of iLoT model)

Model	Speedup vs Monte Carlo
float32	38 000x
int8	68 000x

Test Setup:

TensorFlow v2.3; Platform: Intel(R) Xeon(R) Platinum 8280 CPU; Cascade Lake architecture; #Nodes: 1; #Sockets: 2; Cores/socket: 28; Threads/socket: 56; DDR Mem Config: 12 slots / 16GB / 2933;

• Speedup of 1.8x

openlab

→ Total speedup of 68 000x versus Monte Carlo

Computational Evaluation

(of iLoT model)

 Reduction in model memory size of 2.26x

Model	Memory [MB]
float32	8.08
int8	3.57

- Future: Fusion of [Conv2D + LeakyReLU + Batch Normalization]
- →Possible additional speedup

openlab

Physics Evaluation

Shower Shapes

• Mean squared error (MSE) between GAN and validation data

Model	MSE (Lower is better)	+
float32	0.061	
iLoT int8	0.053 🗸	
TFLite float16	0.253	
TFLite int8	0.340	

iLoT shows a good accuracyTensorFlow Lite performs worse

Physics Evaluation

Sampling Fraction

- Ep: Energy of the injected particle into the calorimeter or generator network

The quantization does not take this metrics into account

- \rightarrow More detailed studies needed
- \rightarrow Define new physics metrics

CERN

openlab

Ratio of Ecal and Ep for 2-500 GeV

- 2.1x speedup due to conversion from Conv3D to Conv2D
- **38000x** speedup of GAN to Geant4
- **1.8x** speedup due to quantization from float32 to int8
- **68000x** total speedup of quantized GAN versus Geant4 simulation
- Good physics accuracy for optimization metrics

QUESTIONS?

Reduced Precision Strategies for Deep Learning: 3DGAN Use Case

Florian Rehm [CERN openlab, RWTH Aachen]

Sofia Vallecorsa [CERN openlab], Vikram Saletore [Intel], Hans Pabst [Intel], Adel Chaibi [Intel], Kerstin Borras [DESY, RWTH Aachen], Dirk Krücker [DESY]

Backup: Computational Evaluation

Tests on Intel CPUs

Test Setup:

TensorFlow v2.3; Platform: Intel(R) Xeon(R) Platinum 8280 CPU; Cascade Lake architecture; #Nodes: 1; #Sockets: 2; Cores/socket: 28; Threads/socket: 56; DDR Mem Config: 12 slots / 16GB / 2933;

Method	SW Framework Year	Precision	HW Platform	Time/Shower	Speedup
Monte-Carlo (Geant4) Sim SW	Simulation SW	FP32	2S Intel Xeon [®] Processor 8180	17000	1.0 (Baseline)
3D-GANs (3D conv) 4-Streams	TF 1.14 2018	FP32	2S Intel Xeon [®] Processor 8160	0.85	20,000x
3D-GANs (using 2D conv) 4-Streams	TF 2.4 2020	FP32	2 nd Gen 2S Intel Xeon® Processor 8280	0.43	38,000x
3D-GANs (using 2D conv) 4-Streams	TF 2.4 2020	INT8	2 nd Gen 2S Intel Xeon [®] Processor 8280	0.25	68,000x

Backup: Pixelwise Comparison

- Measures how different the output images of the models are
- Same Input vector to all models
- Sum of the absolute elementwise difference of the outputs

Model	Mean	STD
iLoT int8	0.133	0.291
TFLite float16	4.054	0.721
TFLite int8	1.550	0.191

Backup: Shower Shapes

CERN openlab

