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Calorimeter Detectors

• Particle physics studies the fundamental properties 
and interactions of (novel) elementary particles. 

• Particles are colliding with highest energy to 
produce know and novel particles.

• Calorimeter detectors measure the energy of 
particles produced in the collisions.

• The entering particle produces a cascade of shower 
particles which are absorbed and detected.
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Calorimeter Simulations

• Calorimeter Monte Carlo simulations are based on Geant4 which are 
computing resource intensive when used in detailed geometry and particle 
tracking

• They use about 50% of the computational resources of the worldwide LHC 
grid

• LHC high luminosity phase requires 100 times more simulated data*

→ Develop a new approach which occupies 

less resources
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*A Roadmap for HEP Software and 

Computing R&D for the 2020s

https://doi.org/10.1007/s41781-018-0018-8
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3D Training Data

• Interpretation of the calorimeter outputs as images 

• 3D shower image granularity: 25x25x25

• Energies between 2-500 GeV
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Particle

200 000 shower images 
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Generative Adversarial Networks

• Train two networks (Generator & 
Discriminator) in a minmax game

• GANs reach a good level of 
accuracy*

➢ We want to further decrease the 
computational resources

• Only the generator network is 
used to generate shower images

3DGAN
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*G. R. Khattak, et al., ICMLA 2019 

Particle Detector Simulation using 

Generative Adversarial Networks with 

Domain Related Constraints
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Baseline Conv3D Generator

• Until now: Representing 3D images → Using 3D convolutional layers

• Conv3D layers are not supported in lower precision

→ Creating neural network consisting only of Conv2D layers
• First approach: Channel dimension as 3rd dimension

• Bad accuracy

Florian Rehm   - Reduced Precision Strategies for Deep Learning: 3DGAN Use Case

Paper: Three dimensional Generative Adversarial 

Networks for fast simulation, Carminati et al., 2018
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New Conv2D Generator

• Solving a 3D problem with 2D layers

• Increasing the number of parameters → more powerful network 
→ higher accuracy

• 2.1x speedup on CPU 
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Why Reduced Precision?

• Goal: Develop and optimize a new simulation approach to make sure to
use the hardware as efficiently as possible

• Deep Learning training and inference are computationally intensive
• Models need a large amount of memory

• Moving data to and from the processor units strains the bandwidth

→Reduced precision computation reduces memory and bandwidth
occupation

→Speed-up and lower memory requirements
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Reduced Precision Computing

• Quantization: Converting a number from a higher to a lower format
• E.g. from float32 to int8

• Quantization Tool: 
Intel Low Precision Optimization Tool (iLoT)
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https://github.com/intel/lp-opt-tool
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Quantization Problems

• TensorFlow supports no negative quantized values (signed int8)

• → All quantization tools do not support LeakyReLU function

• Needed to be implemented

• Reference Tool: TensorFlow Lite
• Does not support signed int8 → no LeakyReLU

• Does not support transpose convolutional layers for up-sampling

→ Use quantized TensorFlow Lite model only for accuracy comparison
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LeakyReLUReLU

https://www.tensorflow.org/lite
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Computational Evaluation

• Speedup of 1.8x

→ Total speedup of 68 000x versus Monte Carlo

(of iLoT model)
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Model Speedup vs
Monte Carlo

float32 38 000x

int8 68 000x

Test Setup: 

TensorFlow v2.3; Platform: Intel(R) Xeon(R) Platinum 8280 CPU; 

Cascade Lake architecture; #Nodes: 1; #Sockets: 2; 

Cores/socket: 28; Threads/socket: 56; 

DDR Mem Config: 12 slots / 16GB / 2933; 



12

Computational Evaluation

• Reduction in model memory size 
of 2.26x  

(of iLoT model)
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Model Memory  
[MB]

float32 8.08

int8 3.57

• Future: Fusion of 
[Conv2D + LeakyReLU + Batch Normalization]

→Possible additional speedup
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• Mean squared error (MSE) 
between GAN and validation data 

➢ iLoT shows a good accuracy

➢ TensorFlow Lite performs worse

Physics Evaluation
Shower Shapes
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Model
MSE

(Lower is better)

float32 0.061

iLoT int8 0.053

TFLite float16 0.253

TFLite int8 0.340
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Physics Evaluation
Sampling Fraction
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• Ecal: Sum of all image cells 
ෝ= total measured energy

• Ep: Energy of the injected 
particle into the calorimeter or 
generator network

The quantization does not 
take this metrics into account

→ More detailed studies needed

→ Define new physics metrics
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Summary

• 2.1x speedup due to conversion from Conv3D to Conv2D

• 38000x speedup of GAN to Geant4

• 1.8x speedup due to quantization from float32 to int8 

• 68000x total speedup of quantized GAN versus Geant4 simulation

• Good physics accuracy for optimization metrics
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QUESTIONS?
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Backup: Computational Evaluation
Tests on Intel CPUs
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Method SW Framework
Year

Precision HW Platform Time/Shower Speedup

Monte-Carlo 
(Geant4) Sim SW

Simulation SW FP32 2S Intel Xeon® 
Processor 8180

17000 1.0 
(Baseline)

3D-GANs (3D conv)
4-Streams

TF 1.14
2018

FP32 2S Intel Xeon® 
Processor 8160

0.85 20,000x

3D-GANs (using 2D 
conv) 4-Streams

TF 2.4
2020

FP32 2nd Gen 2S Intel 
Xeon® Processor 
8280

0.43 38,000x

3D-GANs (using 2D 
conv) 4-Streams

TF 2.4
2020

INT8 2nd Gen 2S Intel 
Xeon® Processor 
8280

0.25 68,000x

Test Setup: 

TensorFlow v2.3; Platform: Intel(R) Xeon(R) Platinum 8280 CPU; 

Cascade Lake architecture; #Nodes: 1; #Sockets: 2; 

Cores/socket: 28; Threads/socket: 56; 

DDR Mem Config: 12 slots / 16GB / 2933; 
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Backup: Pixelwise Comparison

• Measures how different the output images of the models are

• Same Input vector to all models

• Sum of the absolute elementwise difference of the outputs
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Model Mean STD

iLoT int8 0.133 0.291

TFLite float16 4.054 0.721

TFLite int8 1.550 0.191
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Backup: Shower Shapes
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